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S1. Description of Multi-branch Model  

The multi-branch model (also referred as generalized standard linear solid model) 

has been shown to be able to capture the shape memory effects of the polymers1. 

Figure S1 shows a schematic representation of the model, where the number of 

branches depends on the width of glass transition temperature range and the 

structure of the polymers.  

  

Figure S1  1D rheological representain of the multi-branch model 

By applying the Boltzmann’s superposition principle, the constitutive model 

can be rewritten as 2,3, 
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where   em(t)  is the total strain,  
Eeq  and  Ei  are the elastic moduli in the equilibrium 
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and nonequilibrium branches, respectively.   τ i(T ) is the temperature-dependent 

relaxation time in the dashpot of each nonequilibrium branch and follows the well-

known time-temperature superposition principles4, i.e.,  

   τ i(T ) = τ 0
iαT (T ) , for  1 i m≤ ≤ ,  (S3) 

where   αT (T ) is the time-temperature superposition (TTSP) shifting factor and 0
iτ  is 

the relaxation time at the reference temperature when ( ) 1T Tα = . At temperatures 

around or above a reference temperature Ts, the WLF equation  is applied, 
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where C1 and C2 are material constants and TM is the WLF reference temperature. 

When the temperature is below Ts,   αT (T ) follows the Arrhenius-type behavior: 
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A finite deformation constitutive model can be developed based on the above linear 

viscoelastic model5. Eq. S1-S4 can be implemented into a Matlab code.  

 

S2. Material parameters 

All the material parameters are obtained for the seven digital materials tested 

in this work.. The method to calibrate corresponding material parameters for all 

equilibrium and non-equilibrium branches can be found in our previous work1. The 

fitted storage modulus and tan δ are presented and compared with the experiment 

in Fig.S2. 

 
 

 

 

  



Table  S1.  Modulus and relaxation time of nonequilibrium branch of the constitutive model 

Poly.1 

E1~ E6(MPa) 2.1e3 2.7e2 2.1e2 2.0e2 3.2e2 1.5e2	
  
1
0τ ~ 6

0τ
 (s) 2.1e-5 2.0e-4 5.5e-3 6.3e-2 3.1e-1 3.1	
  

E7~ E12(MPa) 6.8e1 2.8e1 1.1e1 4.9 3.0 3.e-­‐1	
  
7
0τ ~ 12

0τ
 (s) 2.6e1 2.2e2 2.0e3 2.0e4 2.0e5 2.3e6	
  

E9~ E16(MPa) 1.0 1.0 1.0e-1 1.0e-1  	
  
9
0τ ~ 16

0τ
 (s) 1.0e8 1.0e9 1.0e10 1.0e11  	
  

Poly.2 

E1~ E6(MPa) 1.8e3 2.4e2 2.8e2 2.8e2 1.5e2 8.7e1	
  
1
0τ ~ 6

0τ
 (s) 2.0e-5 2.e-3 1.e-2 7.7e-2 8.9e-1 9.1	
  

E7~ E12(MPa) 4.8e1 2.5e1 1.3e1 5.9 2.8 1.4	
  
7
0τ ~ 12

0τ
 (s) 84 7.2e2 5.7e3 4.6e4 3.8e5 3.5e6	
  

E9~ E16(MPa) 5.1e-1 1.0e-3 1.0e-4 1.0e-5  	
  
9
0τ ~ 16

0τ
 (s) 2.0e7 1.0e9 1.e10 1.0e11  	
  

Poly.3 

E1~ E6(MPa) 2.0e3 2.1e3 6.0e2 2.7e2 3.2e2 2.1e2	
  
1
0τ ~ 6

0τ
 (s) 1.0e-5 1.e-4 6.0e-4 1.e-2 1.e-1 1.	
  

E7~ E12(MPa) 1.3e2 7.8e1 4.1e1 1.7e1 6.2 1.5	
  
7
0τ ~ 12

0τ
 (s) 9.7 7.9e2 5.8e2 3.8e3 2.5e4 2.0e5	
  

E9~ E16(MPa) 1.1e-1 4.1e-3 1.0e-3 1.0e-4  	
  
9
0τ ~ 16

0τ
 (s) 2.8e6 2.0e7 2.0e8 2.0e9  	
  

Poly.4 

E1~ E6(MPa) 4.8e2 3.1e2 2.9e2 2.1e2 1.2e2 6.5e1	
  
1
0τ ~ 6

0τ
 (s) 2.3e-5 4.6e-4 6.8e-3 7.1e-2 6.7e-1 5.1	
  

E7~ E12(MPa) 2.5e1 5.6 1.0 1.0 1.0e-1 1.e-­‐1	
  
7
0τ ~ 12

0τ
 (s) 34.1 2.e2 2.e3 1.0e5 1.0e6 1.e7	
  

E9~ E16(MPa) 1.0e-3 1.0e-4 1.0e-5 1.0e-6  	
  
9
0τ ~ 16

0τ
 (s) 1.0e8 1.0e9 1.0e10 2.0e10  	
  

Poly.5 

E1~ E6(MPa) 3.8e2 3.0e2 3.9e2 2.6e2 1.7e2 9.4e1	
  
1
0τ ~ 6

0τ
 (s) 7.5e-4 6.8e-3 0.1 0.99 8.6 61.	
  

E7~ E12(MPa) 3.9e1 1.2e1 2.7 9.e-1 3.6e-2 1.e-­‐2	
  
7
0τ ~ 12

0τ
 (s) 3.9e2 2.5e3 2.e4 2.e5 2.3e6 2.0e7	
  

E9~ E16(MPa) 1.0e-3 1.0e-4 1.0e-4 1.0e-5  	
  
9
0τ ~ 16

0τ
 (s) 2.0e8 2.0e9 2.0e10 2.0e11  	
  

Poly.6 

E1~ E6(MPa) 2.e2 2.e2 2.7e1 2.1e1 3.2 1.5	
  
1
0τ ~ 6

0τ
 (s) 1.e-4 1.e-3 1.e-2 1.e-1 1 8.2	
  

E7~ E12(MPa) 6.e-1 2.e-1 1.e-1 3.e-2 3.e-2 1.e-­‐3	
  
7
0τ ~ 12

0τ
 (s) 4.3e1 2.e2 1.e4 1.e5 1.e6 2.e6	
  

E9~ E16(MPa) 1.e-4 1.e-5 1.e-6 1.e-7  	
  
9
0τ ~ 16

0τ
 (s) 2.e7 2.e8 2.e9 2.e10  	
  

Poly.7 E1~ E6(MPa) 9.e1 1.e1 2.8e2 2.6e1 1.9 1.3	
  



 

 

 
Table S2. Parameters of the applied constitutive model  

 

 

 

Figure S2.   Fitted storage modulus and for all 7 digial materials. Blue solid lines indicate the 

fitted materials and black with circles indicate experiment data. 
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1
0τ ~ 6

0τ
 (s) 2.e-5 2.e-4 8.e-3 1.e-1 9.e-1 7.2	
  

E7~ E12(MPa) 5.e-1 3.e-1 1.e-2 1.e-3 2.e-3 1.e-­‐3	
  
7
0τ ~ 12

0τ
 (s) 3.6e1 2.e2 1.e4 9.e5 2.1e6 2.e7	
  

E9~ E16(MPa) 2.7e-4 1.5e-5 1.e-6 1.1e-7  	
  
9
0τ ~ 16

0τ
 (s) 2.e8 3.e8 2.e9 2.e10  	
  

 E_s 
(MPa) AFKB C_1 C_2 T_g (K) T_m 

Poly.1 3.2 -9500 13.5 65.6 304.2 294.3 
Poly.2 2.4 -9800 14.1 52.8 306.7 288.1 
Poly.3 5.2 -10000 12.6 47.6 327.6 308.5 
Poly.4 8.2 -21800 8.6 51.6 331.3 320.3 
Poly.5 8.9 -10800 11.6 52.6 332.7 315.3 
Poly.6 9.1 -10000 7.3 53.6 345.7 327 
Poly.7 9.0 -15000 7.1 55.8 346 328 



S3.  Scaling rule between bending deformation and linear strain deformation 

To demonstrate the scaling relation between bending deformation and linear 

strain deformation, we conduct  FEA simulation of bending model and compare 

with linear strain model. In addtion, bending deformaiton can be considered as 

combination of linear deformation of each minor layer along thickness (as shown 

in Figure S3b). When considering there is no deformation of the central layer in 

bending process, the average linear strain change can be simplifilly defined as   
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Here, oR and tR  are the radius of the curvature of the central line at the initial and 

the final states; and oθ  and tθ  are the circular angles at the initial and final states, 

respectively (as shown in Figure S3a). By using relation t t o oR Rθ θ=  (no 

deformation of central layer), the linear strain rate can be defined in terms of angle 

change rate as 

  
   
!e = πh

4
!θ ,  or  

   
!θ = 4

πh
!e , (S6) 

where is the thickness of the sample. The above angluar change rate relationship is 

applied in the following bending model. All the material parameters for the 

bending model are the same with that of the linear strain model. 

  

  

Figure S3.  Schematic of hinge with thickness of h and curavature radius of R 
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Linear strain model: In the programming step, the SMP is stretched to a target 

strain emax (20%) with a constant loading rate   !e  (0.01s-1) at the programming 

temperature Td  followed by a specified holding time at Td  before being cooled to 

the shape-fixing temperature TL (10oC ) at the rate of (2.5oC min-1 ). Once TL is 

reached, the specimen is held for 1 hour then the tensile force is removed. Finally, 

the temperature is increased to the recovery temperature at the same rate of cooling 

and subsequently stabilized for another 50 mins. In the programming step, stress 

can obtained directly from Eq. S1 when the displacement controlled is used (as in 

our case); in the recovering step, the total strain ( )e t  is obtained by solving Eq. S1 

with a zero stress on the left-hand-side. Then the recovery ratio is obtained as 

   Rr (t) = 1− e(t) er , (S7) 

where re is the strain measured at the start of the revovery process. 

 

Bending model:  Similar to the linear strain model, the hinge with the initial angle 

of  oθ =90o  is programmed to a target state ( maxθ =0o) at the programming 

temperature Td (with the maximum angle deformation of 90o), followed by a 

specified holding time at Td before being cooled to the shape-fixing temperature. 

To have a same loading rate with that of linear strain model, the angle change rate 

of  
   
!θ = 0.04

πh
is applied to arrive target deformation. The following holding 

condition and recover conditions are set the same with that in the linear strain 

model. The general shape memory cycle is shown in Figure S4a. The shape fixity 

is defiend as maxf rR θ θ= , and the shape recovery ratio is defined as

1 ( )r rR tθ θ= − . Here rθ is the angle at the start of the free recovery process, and 

maxθ is the maxiumum angle change. 

 



 

Figure S4.  Shape memory simulations of SMP in bending deformation and compared with 

linear strain model. (a) A schematic graph of the thermomechanical history of the programming 

and free recovery process in an SM cycle; (b) FEA simulation on shape memory cycle of 

hinges; (c) shape fixity of hinge under different programming condition and compared with 

strain model; (d) shape recovery behaviour of hinge and compared with that by linear strain 

model. 

 

From the Fig. S4c, the bending deformation has a same shape fixity with that 

of linear strain deformation when under same mechanical and thermal conditions. 

This is because the shape memory behavior is mainly affected by loading strain 

rate rather than the final deformation magnitude if the deformation occur in the 

rubbery region. Fig. S4d shows that the recovery behaviors are the same for linear 

strain and bending as long as they have the same fixity. It can be concluded 

bending deformation has a same shape memory behavior with that of linear strain 
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case, when the same loading strain rate as well as other mechanical and thermal 

conditions are applied.  
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